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Conditionally sampled, ensemble-averaged velocity measurements, made with a laser velocimeter, were taken
in the flowfield over the rear half of an 18°70thick circular arc airfoil at zero incidence tested at M= 0.76 and at a

Reynolds number based on chord of !1 × 10 6. Data for one cycle of periodic unsteady flow having a reduced
frequency f of 0.49 are analyzed. A series of compression waves, which develop in the early stages of the cycle,
strengthen and coalesce into a strong shock wave that moves toward the airfoil leading edge. A thick shear layer
forms downstream of the shock wave. The kinetic energy and shear stresses increase dramatically, reach a
maximum when dissipation and diffusion of the turbulence exceed production, and then decrease substantially.
The response time of the turbulence to the changes brought about by the shock-wave passage upstream depends
on the shock-wave strength and position in the boundary layer. The cycle completes itself when the shock wave
passes the midchord, weakens, and the shear layer collapses. Remarkably good comparisons are found with
computations that employ the time-dependent Reynolds averaged form of the Navier-Stokes equations using an
algebraic eddy viscosity model, developed for steady flows.

Nomenclature

a** = speed of sound in the freestream, 305 m/s
c = airfoil chord

Cr = pressure coefficient
f = frequency of unsteady flow oscillation

f =reduced frequency of unsteady flow

oscillation, xfc/u**
e = Prandtl mixing length

M s =Mach number ahead of the shock wave in
a shock-fixed frame of reference

M** = freestream Mach number

n =number of instantaneous velocity

samples used to form ensemble-averages

P, = freestream total pressure

Ap =incremental pressure from the mean

surface pressure
R = reattachment

Re c =Reynolds number based on freestream
conditions and airfoil chord

S = separation

SC = shock-wave weakening and collapse
SF = shock-wave formation

SP = shock-wave passage

SHEAR = shear function, - < u' v' >/a_

t =time measured from the beginning of the

oscillating pressure pulse
t* = time measured from the beginning of the

oscillating pressure pulse to the mean

point of the ensemble-averaging interval
AT

T =fractional time of one cycle of flow
oscillation
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T, =time for ensemble-averaged velocity
correlations to achieve their maximum

value after shock passage

AT =time interval used for ensemble averaging

TURBKE =turbulent kinetic energy function,
[ <u'2> + <v'2> ]/a** 2

u,v =velocity in the x and y directions,
respectively

u',v* =mean velocity in x and y directions,
respectively during ensemble-averaging
interval AT

u',v' = fluctuating velocity in x and y directions,
respectively

<u>,<v> =ensemble-averaged velocity in x and y

directions, respectively

<u' 2 >, < v' 2 > =ensemble-averaged square of the velocity
fluctuation in the x and y directions,
respectively

=ensemble-averaged fluctuation velocity
correlation

= normalized velocity, < u >/a**
=total velocity, (u 2 + o 2) _'_

=distance from the airfoil leading edge in a
direction along airfoil centerline

=distance from the airfoil centerline in a
direction normal to the centerline

=distance from the airfoil surface in a
direction normal to the centerline

= boundary-layer thickness

<U'V' >

U

V

X

Y

.#

Subscripts

e

m

0

=edge of boundary layer
= mean value

= upstream, ahead of shock wave

Introduction

URBULENCE modeling is considered an important
pacing item leading to successful development of

computational fluid dynamics, m Building-block experiments
to guide the development and test the accuracy of modeling

concepts have been initiated and are helping in the important

area of turbulence model development. 3,4 Although the

modeling problem is by no means solved, progress has been

demonstrated for several important classes of problems. For

example, recent studies have shown that boundary-layer flows
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in the presence of moderate to large pressure gradients can be

predicted adequately with scalar eddy viscosity models. _ Even

flows with separation are predicted qualitatively and, in some
instances, when separated zones are small, quantitatively 6,7

with eddy viscosity models; however, the details within the

separated regions are not always correct.

One building-block experiment is the transonic flow over a

circular arc airfoil. Depending on the freestream Mach

number, the flow developed over the airfoil can be either

steady with shock-induced separation extending beyond the

trailing edge or unsteady with shock-induced separation.

Several related experimental studies of this flow have been

reported, sn° Concurrent with these experimental studies,

numerical simulations of the flowfield using the Reynolds

averaged form of the Navier-Stokes equations have been
undertaken. IH_ Although the details of the flows in the

separated regions have not been predicted satisfactorily, all of

the qualitative features have been.

With regard to the unsteady flow condition, Levy t2 has

shown that it is possible numerically to simulate most of the

features in a qualitative sense. However, the predicted

frequency of oscillation and the predicted magnitudes of the
fluctuating surface pressures are 20_0 low and as much as

50070 high, respectively. The question naturally arises as to
whether these differences are attributable to the turbulence

model employed and what improvements might be suggested

after an experimental determination of the turbulence field.

Little is known regarding turbulence in unsteady transonic
flows, i, At lower speeds, where compressibility and pressure

gradient effects are less severe, steady-flow turbulence models

were employed in a quasisteady manner with remarkably
successful results, n_

In this paper, a detailed examination of the turbulent field

in an usteady transonic flow undergoing shock-induced

separation is presented. Ensemble-averaged mean and

fluctuating velocities, obtained from conditionally sampled

laser velocimeter data, are described and analyzed to assess

the applicability of modeling concepts usually employed in

steady-flow problems. Some comparisons with computations

employing the Reynolds averaged Navier-Stokes equations

with a mixing length turbulence model are then presented to

illustrate the status of current predictive capabilities.

Experimental Arrangement

The test model was a circular arc airfoil with a chord of

20.34 cm and a ratio of thickness to chord of 0.18. It was

mounted in a rectangular test section with dimensions of
38.1 x25.4 cm and it spanned the shorter dimension. The

upper and lower walls were contoured so that the supersonic

region of the flow developed over the airfoil would not extend
to the walls. Optical access for high-speed shadowgraph

movies and the laser velocimeter tests was provided by glass

windows, 14x14 cm, installed in the sidewalls. A com-

bination of choking inserts and a translating wedge was used
to establish the test Mach number. All test data were taken at

M_. =0.76 and at a chord-based Reynolds number of 11 x 106

in a high Reynolds number blowdown facility.

Two beams from a 4-W argon laser were split, rotated ±45

deg, and intersected in the flowfield around the model

near midspan. The resulting probe dimensions were ap-

proximately 0.3 mm in diameter by 3 mm in length in the

spanwise direction. A two-channel synchronized counter

system _° was used to measure the velocities of 0.4-tLm-diam

polystyrene particles introduced into the flow in the settling

chamber. These particles were assumed to follow the flow

without significant lag. Corroborating evidence and com-

putations supporting this assumption are noted in Ref. 10.

The entire optical system was mounted on an optical bench

and remote-controlled positioning was employed during test

runs. About 2000 or more data samples were recorded at each
spatial station. Instantaneous velocity components and

surface pressure at midchord were recorded simultaneously

on analog tape, digitized, and analyzed subsequently on a

computer.

Flow Domain Investigated

A previous study established the Mach-Reynolds number
domain of the flow characteristics around the airfoil in the

present test section configuration. 8 Depending on the Mach-

Reynolds number combination, the flow was either steady or

unsteady. The case of interest for the present study is the
unsteady periodic flow established at a Mach number of 0.76
and a Reynolds number of 11 x l06 where shock-induced

separation occurred alternately 180 deg out of phase on the
upper and lower surface of the airfoil.

A sequence of shadowgraphs taken from a high-speed
movie that depicts these flow characteristics for various

fractions of the cycle is shown in Fig. 1. The movies were

taken through glass windows that allowed viewing of the
upper portions of the flow only. These reproductions of the
shadowgraphs showing both sides are composites of frames

from the same film, but with one image inverted and reversed;
the phase difference in the flow, determined from a film
timing-marker triggered by the same signal used to con-

ditionally sample the velocity measurements, is taken into

account. On the upper surface, a series of weak shock waves

form near the trailing edge at early times, increase in strength,

and coalesce into a single wave that moves toward the mid-

chord. As the shock approaches midchord, it weakens ap-

preciably, and the cycle repeats itself periodically about 185
times a second. A similar situation occurs on the lower surface

180 deg out of phase.

Data Acquisition and Test Technique

The periodic nature of the flow and phase relationship

between the flow over the upper and lower surfaces of the

airfoil were established previously. B For the present in-

mm o U
2!% Nmgg

.,m nnmnu

r, t 9 i, _ ; _ I,

Fig. 1 Composite shadowgraphs showing the unsteady flowfield
over the airfoil. M_ = 0.76, Re c = I I x 106 .
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vestigation, the pressure time history of a fast-response
transducer located at the midchord was used to define the

period of the flow cycle as well as to provide the trigger for

conditionally sampling of the velocity measurements.

A typical transducer signal output as a function of time is
shown in the upper half of Fig. 2. The time response of the

transducer reference volume, vented to the surface a small

spanwise distance away, was large relative to that of the
measurement volume, so the signal represents the change in

pressure from the mean value established over many flow

oscillations. For the purposes of this study the cycle time was

chosen as the time between successive steep rises in the

pressure signal, which corresponds with the passage of the

shock wave upstream. An electronic circuit designed to trigger

on the steep rise rate of the pressure was used to determine the

time of each cycle and to provide a means for conditionally

sampling the laser data.

A typical distribution of cycle times is shown in Fig. 2 to

illustrate the periodicity of the flow. In the example, over
2000 flow oscillations occurred. The distribution is Gaussian

and the mean cycle time was 5.40 ms with a standard

deviation of 0.132 ms or ±2.4070. The randomness about the

mean is attributable to both the uncertainty in trigger time

and to the flow randomness, but the randomness associated

with the trigger time is rather small compared to the standard

deviation, about ± 0.2°70.
The dual counter data rate was of the order of a few

thousand per second or approximately 5 per flow cycle and so
the data from many cycles were combined to obtain the

velocity for a single cycle by conditionally sampling the data
on the basis of a time beginning with the onset of the trans-

ducer pressure rise. In order to account for the randomness

of the cycle times, each velocity measurement time was
normalized by the actual cycle time during which the velocity

data were acquired. An example of the conditionally sampled

data for a single point in the flowfield is presented in Fig. 3.

(Note that the velocity scale is broken to provide an expanded

scale.) The two synchronous velocity components have been

combined to give the total velocity which is shown as a
function of the dimensionless fraction of time T for a single

cycle of oscillation. Over 2000 data samples were used to
construct this plot. The velocity increases with time and then

shows a marked decrease as the shock wave passes upstream.

An ensemble-average of the conditionally sampled data was

then performed to obtain mean velocity, turbulent kinetic

energy, and turbulent shear stress for various times within the

cycle. Consider the velocity data in Fig. 3 to be typical of the

individual components u and v. The ensemble-averaging time

AT must be long relative to the characteristic time of the
turbulence and short relative to the characteristic cycle time.

For AT ,¢ 1 and considering the general case where < u> can

change with time over the averaging interval, the velocity to

where the first two terms represent the ensemble-averaged

velocity at any time t within the interval AT, and t* represents

the ensemble-averaged time for the interval AT. Expressions
for the conditionally sampled, ensemble-averaged velocities

and their correlations for the interval AT were determined

from Eq. (l). They become

1 n

<u(t) > = <u*> = -- Y] u i
rl i=l

<v(t)> = <v'> = 1-- U i

n i=l

<u' (t)v' (t) > = <u'v' >

=-- i/i- <U*> +--

n i=l

d<U*>dt° (li_l.)]

(2)

(3)

[ (X v i- <v*> + dt* (ti-t* (4)

<u' (t)u' (t) +v' (t)v' (t) > = <u' _> + <v '2 >

-- gl i=l
d<u*> (li-t*))] 2d/*

d<v*>

where n is the total number of velocity samples in the interval

AT.

The averaging interval ATwas chosen as 0.05. This interval

corresponds to a real time that is longer than the characteristic

time scale of the turbulence, 5/u e, by factors of 3 and 7,

respectively, depending on the maximum and minimum

overall mean velocity and length scale variations throughout

the cycle. Further, the interval is sufficiently small to insure
that the variation of mean velocity over the interval can be

given with good confidence by the first-order correction in

Eq. (1). It is important to note that the present technique

employing conditional sampling does not require corrections

to the equations for ensemble averages to account for particle

sampling bias of the type discussed in Ref. 16. Also, the

present technique is not restricted to the choice of the

averaging interval in the same way as a hot wire. In the hot

wire case, the maximum interval determines the largest scale

of the turbulence that can be observed; in the present case,

scales for all frequencies can be obtained provided that 1) the

sampling takes place over enough cycles to capture them, and

2) the probabilities of particles being present in large- and

small-scale turbulence are equal.

Conditional sampling as applied in the present investigation

may introduce uncertainties in the ensemble averages due to

the randomness in the cycle times discussed previously. Most
of this uncertainty was accounted for by normalizing the

sampling times by the actual cycle time during which the data

were acquired. The validity of this procedure is substantiated

by the fact that outside the viscous regions, except in some

special instances discussed later and attributed to flow
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physics, the ensemble-averaged shear stresses approach zero

as expected, and the turbulent intensities tend toward their
expected freestream levels.

The number of data samples used to compile the ensemble

averages varied as a result of test technique. Usually the

number of samples n was more than 100, although for some

locations n was less. The effects of the sample number on
measurement error can be estimated as indicated in Ref. 17.

For an assumed confidence limit, the uncertainty in velocity

depends on the sample number and the turbulent intensity

whereas the error in turbulent intensity depends only on the

sample number. Using the analysis of Ref. 17, the range of

estimated errors in velocity and turbulent intensity for the
present data, based on a 9501o confidence limit, lies between a

few percent and 20010, with the larger error occurring where

the velocity was smallest and where the turbulent intensity
relative to that velocity was largest. No estimate was made of

the errors in shear stresses, but they probably are in the same

range•

Results and Discussion

Experimental Observations

Profiles of conditionally sampled, ensemble-averaged axial

velocity, turbulent shear stress, and turbulent kinetic energy
were obtained at eight axial stations between x/c= 0.6 and

1.05. A movie depicting the changes in these profiles with time

was made and used with the shadowgraph movie to interpret
the results as follows.

At early times within the cycle, the boundary layer is thin
and the flowis attached over the upper airfoil surface. As the

shock strengthens and moves forward the boundary layer

thickens and reversed flow occurs in the vicinity of x/c= 0.8
and at the trailing edge. As time increases further and the

shock continues to move upstream, the reversed flow zone
increases in size. At the time the weakened shock moves near

x/c= 0.5, the separation collapses, and the shear layer thins.

Other noteworthy observations are a significant increase in

the turbulent kinetic energy in the shear layer when the shock

wave passes by the measuring location and the presence of

"negative" shear subsequent to the weakening and collapse of
the shock wave and during the formation of the series of

compression waves. Apparently, the compression waves have

a bearing on this observation as the "negative" shear stresses

occur near the edge or outside of the boundary layer when
these waves are observed.

Time histories of the ensemble-averaged data for three

chord stations and various locations above the airfoil surface

are shown in Fig. 4. In the upper portions of the figure, the

Fig. 3 Time history of velocity from conditionally sampled data for

one cycle of flow oscillation. M= = 0.'/6, Re c = 11 x 10 6 .

axial velocity is shown for all measuring stations up to

y/c=O.15. In the remaining portions of the figure, only the

data below the boundary-layer edge are displayed. This was

done for clarity because the boundary-layer thickness varies

considerably with time during the flow oscillation and many

of the measuring points are outside the boundary layer at

early time and not essential to the discussion on modeling that
follows. The notations along the time axis refer to shock

formation (SF), shock passage (SP), the beginning and end
of significant separation (S and R), and shock collapse

(SC). The shock formation time was arbitrarily taken as the

time when the series of compression waves present at early

times coalesced into a single strong wave; the shock passage

coincided with the passage of the leading edge of the shock

foot; and the zone of separation was inferred from the

velocity histories.

The time histories show that, after the strong shock for-
mation and shock passage upstream, the velocities in the inner

portions of the boundary layer are retarded more than in the

outer portions; the corresponding turbulent kinetic energy

and shear increase, maximize, and diminish. At two locations,

x/c = 0.85 and 0.95, the shear during the initial portion of the
cycle is negative; this observation will be discussed sub-

sequently. As the shock wave moved past a measuring station,
the velocities in the outer, inviscid regions of the flow ad-

justed to values consistent with the passage of an oblique
wave. An example of this adjustment is given for x/c=0.7

and y/c = 0.125. This estimate, taken from Ref. 10, was made

using the velocity data upstream of the shock and the shock

angle measured from shadowgraphs.

The shadowgraphs and velocity time histories were used to

estimate shockwave position and zones of significant

separation. The results are shown in Fig. 5a. The magnitude
of the Mach number ahead of the shock wave, in a shock-

fixed frame of reference, is shown in Fig. 5b. The zone of

significant separation was defined where at each chord

station the first measuring point above the surface indicated

zero velocity. This height ranged from between 10 and 2001o of

the boundary-layer thickness. Actual separation and reat-

tachment would occur beyond the extent of this zone. In the

early portions of the cycle, the shock wave moves upstream

more rapidly than during the later portions. Significant
shock-induced separation occurs subsequent to shock

passage.
The foregoing data provide means for evaluating com-

putations of unsteady transonic flows with shock-induced

separation and details of the turbulent flow that should help

in the development of adequate turbulence models. In regard
to the latter, it is convenient to divide the discussion in two

parts, the first dealing with the portion of the cycle between

the time the shock weakens and the shear layer collapses until
the shock forms subsequently (SC< T< SF), and the second

dealing with the remaining portion of the cycle
(SF< T< SC).

As the shock wave weakens and approaches midchord, the

shear layer collapses and it takes about 1501o of the cycle time
for large-scale turbulence to pass downstream over the airfoil.
The turbulent kinetic energy decreases, but at some of the

axial locations the shear inside the outer two-thirds of the

boundary layer reverses sign and becomes negative as shown

in Fig. 4. At these axial locations there were usually other

locations outside the boundary layer that also had negative
shear stresses. The presence of negative turbulent shear

stresses in the outer regions of the boundary layer and above

has been observed in other experiments 18.19 for steady flows

in the presence of severe adverse pressure gradients. At first, it

was believed that in the present study these negative shears
were caused by the downward motion of the flow after the

shear layer collapsed. To verify this conjecture, the strain

rates (aulay+avlax), at the measurement points in the

flowfield were evaluated. The strain rate was positive for all

y/c locations during the period, SC< T<SF. Thus, the
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Fig. 4 Time histories of ensemble-averaged velocity, turbulenl kinetic energy, and turbulent shear stresses for a cycle of oscillation. Moo = 0.76,
Re c = 1Ix 106.

turbulent shear was not always directionally in phase with the
mean flow strain rate. It is believed that the negative shear

stresses occur as a result of the interaction of the boundary

layer with a series of unsteady compression waves that form

after the shear layer collapses and passes downstream. The

presence of these waves may also explain why measureable

shear stresses were present outside the apparent edge of the

boundary layer. In the strict sense, scalar eddy viscosity

formulations would not appropriately model this observation

since the shear would not be proportional to the strain rate.

However, it is felt that, since this observation is restricted to
the outer portions of the boundary layer and beyond, it would
have little influence on predictions of boundary-layer

development during this portion of the cycle.
Attention is now focused on the time interval between

strong shock-wave formation and collapse, SF< T< SC. The

velocities shown in Fig. 4 decrease during the formation of the

shear layer aft of the shock wave and rise toward the end of

the time interval when the the layer begins to thin. The inner

portions of the layer have lower momentum and respond

more to the change in flow conditions brought about by the
presence of the shock wave. The turbulent kinetic energy and

shear stress increase to a maximum, at which time dissipation

and diffusion of the turbulence overcome production.

Thereafter they decrease and the shear becomes small and

goes negative in the separated regions of the flow where the

velocities and corresponding velocity gradients become

negative. In general, the shear appears to be in phase with the

kinetic energy, each reaching its maxima and minima at

approximately the same cycle time.

Although there is a deceleration of the flow after shock

passage, it is informative to view the rise time for reaching
maximum turbulent kinetic energy (and/or shear stress) for

x/c<_0.85 as an equilibration time for turbulence production

in response to the changing conditions imposed by the shock

wave. (It should be noted that the actual time for the shock

wave to pass the measuring location and the time for seed

particles to adjust to within 99% of the velocity jump across

the wave are both an order of magnitude smaller than the time

interval between data points in the time histories.) The time to

reach maximum turbulent kinetic energy and shear depends
on the shock-wave strength. For example, at x/c= 0.7, where

the Mach number ahead of the shock wave shown in Fig. 5b is

maxiumum, the time for the turbulent kinetic energy to reach
a maximum is about twice as long as at x/c=0.85. Viewed in

a shock-fixed frame of reference, the number of upstream

boundary-layer thicknesses for adjustment, umT,/6o, is
between 20 and 60 for x/c= 0.85 and 0.7, respectively, where

u,,, an average speed over the rise time 7",, was chosen as 0.6

//e"
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Fig. 8 Comparison of velocity and shear
stress time histories from the experiment and
computations. M** =0.'/6, Re c = 11 × 10 6.
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Comparisons with Computations

Computations of this unsteady flow using the time

dependent Reynolds averaged form of the Navier-Stokes

equations were first reported in Ref. 12. A primitive tur-
bulence model developed for steady flows was employed. An

algebraic mixing length model was applied outside the region

bounded by the dividing streamline that separated the main

and recirculating regions of the flow. Inside the recirculating

region, the eddy viscosity model was varied linearly between

the value at the dividing streamline and zero at the airfoil

surface. (See Refs. 10 and 12 for details of the turbulence

model.) Over the separated region, the mixing length was

frozen at the value achieved prior to separation in an attempt

to account for the lag in adjustment of the turbulence to the

changing conditions imposed by the shock wave. It was

previously shown _°,j2 that the computations reproduce the

unsteady features of the flow, but that the reduced frequency
of oscillation was low by about 20% and that the pressures

downstream of the shock wave were too high, in some cases

double the values of the experiment. Additional comparisons

with the experiment are made next.

The shock-wave shapes from the shadowgraphs are

compared with computed Mach number contours in Fig. 6.

Although all the flow features were reproduced by the

computation, they occurred later in the cycle so the com-

parisons are made at different T's. The computed shock wave

strengthens, moves forward, and weakens substantially, in

agreement with experimental observations. However, the
predicted shock wave is more normal and the pressures

downstream of the shock wave are greater. Similar features,

180 deg out of phase, occur on the lower half of the airfoil

just as in the experiment.
Computed velocity and shear stress profiles are compared

with some of the experimental profiles in Fig. 7. (The times

for the computations are shifted for the reason mentioned

previously.) At the earliest time the velocity profiles agree

reasonably well but the experimental shear profiles show a

residual of the previous cycles' thick layer near and aft of the

trailing edge that is not apparent in the computations. At the

intermediate time, when the shock wave has passed to a

position upstream, both the experiment and computation

show regions of reversed flow, reattachment, and a sub-

stantial thickening of the shear layer. However, the location

and extent of the separated region differ somewhat from the

experiment, as does the maximum shear stress achieved in the

shear layer. At the latest time the velocity and shear profiles

are in good agreement.

The shadowgraph and profile comparisons were made at

different times to illustrate that the computations reproduce

most of the measured features of the flow. Comparisons of

the time histories were also made for each experimental axial
location, and an example is given in Fig. 8 for x/c=0.85.

Although over 20 values of y/c are used in the computation
across the shear layer, only those near the experimental

locations are plotted to facilitate comparison. Locations of

shock passage, and the separation zone at the surface for the

computation are shown on the abscissa. The computations

have all the same features of the experiment, but the velocity

before shock passage is somewhat higher and the change in

velocity in the outer portion of the flow is greater due to the

presence of a more normal shock wave, as mentioned before.

The adjustment of the velocities to the change in conditions

imposed by the shock wave at different positions in the layer

is very much the same as in the experiment. The response of

the shear stress to shock passage also shows the same behavior

exhibited by the experiment, but the magnitude is generally

smaller, except at T=0.85 where there is a sudden increase
where reattachment occurred and where the turbulence model

formulation changed.

The computations, using a rather simple turbulence model,

developed for steady-flow applications reproduced all the

features of this unsteady flow with shock-induced separation.

The implication is that the model does not have to be a precise

one that reproduces all the fine details of the turbulent

structure, but rather one that can account adequately for

turbulence production and destruction mechanisms. In both

the steady and unsteady computations, a lag to turbulence
adjustment was incorporated by freezing the mixing length at

its value ahead of separation. It was found experimentally

that this lag depended on both shock-wave strength and

position in the boundary layer. Therefore, an improvement

could be expected with higher-order models which

automatically build in these lags through the use of additional

differential equations for the turbulence dissipation. 6 The
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experimental data on turbulent shear stress and turbulent

kinetic energy presented herein may help in determining more

appropriate modeling constants in the higher-order models

for the steady flow case. For example, the data could be

employed to help optimize solutions to the unsteady form of

the modeling equations for turbulent kinetic energy and

dissipation using the experimental velocity field and gradients

as known input.

Conclusions

The unsteady flowfield around a circular arc airfoil un-

dergoing shock-induced separation was studied. A two-color,
dual-channel laser velocimeter was used to measure the in-

stantaneous velocities for a region of the flow extending from

midchord to a location beyond the trailing edge. Advantage
was taken of the periodic nature of the unsteady flow in order

to conditionally sample the data over many cycles of flow

oscillation so that the velocity field over a single cycle could be

reconstructed. Ensemble averages were then taken over a time

interval that was short relative to the total cycle time in order

to evaluate the mean velocity, turbulent kinetic energy, and

shear stresses. During the initial portion of the cycle, the flow
on the upper surface of the airfoil was attached and ac-

celerating. As the speed increased; a series of compression

waves strengthened and coalesced into a single shock wave

that moved upstream. A thick shear layer developed down-

stream of the shock wave and flow separation was detected.
As the shock wave approached midchord, it weakened and the

shear layer collapsed and was convected downstream. On the

other side of the airfoil, a similar sequence occurred 180 deg
out of phase.

Time histories of the data show that the turbulent kinetic

energy and shear stress downstream of the shock wave in-

creased dramatically. The time required for each to reach its

maximum level depended on the shock-wave strength and the

position in the boundary layer. Thereafter, dissipation and

diffusion of turbulence exceeded production and the kinetic

energy and shear stress decreased. It was not possible to find

an algebraic length scale that correlated with shear-layer

thickness, nor was the ratio of shear stress to turbulent kinetic

energy constant; however, the shear appeared to be in phase

with the kinetic energy because the times to achieve maxima
and minima were about the same.

Comparisons of the measurements with computations
employing the time dependent, Reynolds averaged form of

the Navier-Stokes equations with a primitive eddy viscosity

model developed for steady flows showed that all the features
of the flow were predicted. The implication seems to be that

turbulence models developed for steady flows apply and that
the model need not reflect all the fine details of the turbulent

structure but rather account in an approximate way for the

production and destruction of the turbulence.
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